Journal of Organometallic Chemistry, 389 (1990) 1-22 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20417

Highly unsaturated macrocyclic silicohydrocarbons

Mikhail Voronkov *, Oleg Yarosh, Galina Turkina, Viktor Vitkovskii and Aleksandr Albanov

Institute of Organic Chemistry, Siberian Branch, Ac.Sci.USSR, 664033 Irkutsk (U.S.S.R.) (Received September 5th, 1989)

Abstract

Nineteen 12-, 15-, 18-, 24- and 30-membered, highly unsaturated macrocyclic silicohydrocarbons containing -SiC=CSi-, (E)-SiCH=CHSi- and $-SiCH_2CH_2Si-$ fragments in the ring were synthesized by the reaction of Me₂Si(C=CMgBr)₂ or BrMgC=CMe₂SiC=CSiMe₂C=CMgBr with FMe₂SiCH₂CH₂SiMe₂F; (E)-FMe₂SiCH=CHSiMe₂F or (E, E)-(ClMe₂SiCH=CH)₂SiMe₂; (E)-BrMgC=CMe₂Si-CH=CHSiMe₂C=CMgBr or Me₂Si(C=CSiMe₂C=CMgBr)₂ with (E, E)-(ClMe₂SiCH=CH)₂SiMe₂; and Me₂Si(C=CSiMe₂C=CMgBr)₂, BrMgC=CMe₂SiC=SiC=CSiMe₂C=CSiMe₂C=CMgBr or BrMgC=CMgBr with (E)-FMe₂SiCH=CHSiMe₂C=CSiMe₂C=CSiMe₂C=CMgBr or BrMgC=CMgBr with (E)-FMe₂SiCH=CHSiMe₂C=CSiMe₂C=CSiMe₂C=CMgBr or BrMgC=CMgBr with (E)-FMe₂SiCH=CHSiMe₂F under conditions of high dilution.

Two 20-membered and one 26-membered macrocyclic silicohydrocarbons containing 6 or 8 silicon atoms bonded by 6 or 8 C=C bonds and an endocyclic CH_2CH_2 or CH=CH bridge were obtained for the first time by treating $BrMgC=CMe_2SiC=CSiMe_2C=CMgBr$ with $Cl_2MeSiCH_2CH_2SiMeCl_2$ or (E)- $F_2MeSiCH=CHSiMeF_2$, as well as $Me_2Si(C=CSiMe_2C=CMgBr)_2$ with (E)- $F_2MeSiCH=CHSiMeF_2$.

Introduction

In 1970, Fritz and Schober synthesized a cyclic silicohydrocarbon, 1,1,4,4,6,6,9,9-octamethyl-1,4,6,9-tetrasilacyclodeca-2,7-diine [1], containing four silicon atoms and two triple bonds in a 10-membered ring. Three years later, the first highly unsaturated macrocyclic silicohydrocarbon, 1,1,4,4,7,7,10,10-octamethyl-1,4,7,10-tetrasilacyclododeca-2,5,8,11-tetraine, whose macrocycle was made of four silicon atoms and four C=C groups, was obtained by one of us [2] through the reaction of calcium carbide with dimethyldichlorosilane in a molten eutectic LiCl-KCl mixture at 400 ° C. Recently, 8-24-membered organosilicon macroheterocycles including endocyclic SiC=CSi and Si(CH₂)_nSi fragments (n = 0-4) have been synthesized [3] and the molecular and crystalline structures of four of them have

been studied [4]. Macrocyclic systems containing Si–Si and C=C groups have been prepared from $BrMgC=CMe_2SiSiMe_2C=CMgBr$ and $Cl(Me_2Si)_3Cl$ [5], as well as from $BrMgC=CMe_2SiSiMe_2C=CMe_2SiSiMe_2C=CMgBr$ and $Cl(Me_2Si)_2Cl$ [6].

Results and discussion

Extending the research in the field of highly unsaturated macrocyclic silicohydrocarbons, we have synthesized a series of new 12-, 15-, 18-, 24- and 30-membered representatives of this interesting class of organosilicon compounds containing SiC \equiv CSi, (*E*)-SiCH=CHSi and SiCH₂CH₂Si fragments in the ring.

1,1,4,4,7,7,10,10,13,13,16,16-Dodecamethyl-1,4,7,10,13,16-hexasilacyclooctadena-2,5,11,14-tetraine (1) was obtained by treating bis(bromomagnesiumethynyl)dimethylsilane with 1,2-bis(dimethylfluorosilyl)ethane in THF [7,8].

Analogously, by the reaction of bis(bromomagnesiumethynyl)dimethylsilane with (E, E)-bis(2-dimethylchlorosilylvinyl)dimethylsilane, 1,1,4,4,7,7,10,10-octamethyl-1,4,7,10-tetrasilacyclododeca-2,5-diene-8,11-diine (2) and 1,1,4,4,7,7,10,10,13,13,16, 16,19,19,22,22-hexadecamethyl-1,4,7,10,13,16,19,22-octasilacyclotetracosa-2,5,14,17-tetraene-8,11,20,23-tetraine (3) were prepared.

 $2Me_2Si(C \equiv CMgBr)_2 + 2FMe_2Si(CH_2)_2SiMe_2F \longrightarrow$

 $Me_2Si(C \equiv CMgBr)_2 + (CIMe_2SiCH = CH)_2SiMe_2 \longrightarrow$

The reaction of bis(bromomagnesiumethynyl)dimethylsilane with (E)-1,2-bis(dimethylfluorosilyl)ethylene leads to 1,1,4,4,7,7,10,10,13,13,16,16-dodecamethyl-1,4,7, 10,13,16-hexasilacyclooctadeca-2,11-diene-5,8,14,17-tetraine (4).

1,1,4,4,7,7,10,10-Octamethyl-1,4,7,10-tetrasilacyclododeca-2,5,8-triine (5) and 1,1,4,4,7,7,10,10,13,13,16,16,19,19,22,22-hexadecamethyl-1,4,7,10,13,16,19,22-octasilacyclotetracosa-2,5,8,14,17,23-hexaine (6) turned out to be the products of the reaction of bis(dimethylbromomagnesiumethylsilyl)acetylene with 1,2-bis(dimethyl-fluorosilyl)ethane.

 $Me_2Si(C \equiv CMgBr)_2 + (E)-FMe_2SiCH = CHSiMe_2F \longrightarrow$

By treating bis(dimethylbromomagnesiumethynylsilyl)acetylene with (E)-1,2-bis(dimethylfluorosilyl)ethylene, it was possible to synthesize 1,1,4,4,7,7,10,10-oc-tamethyl-1,4,7,10-tetrasilacyclododeca-2-ene-5,8,11-triine (7) and 1,1,4,4,7,7,10,10, 13,13,16,16,19,19,22,22-hexadecamethyl-1,4,7,10,13,16,19,22-octasilacyclotetracosa-2,14-diene-5,8,11,17,20,23-hexaine (8).

1,1,4,4,7,7,10,10,13,13-Decamethyl-1,4,7,10,13-pentasilacyclopentadeca-2,5-diene-8,11,14-triine (9) and 1,1,4,4,7,7,10,10,13,13,16,16,19,19,22,22,25,25,28,28-eicosa methyl-1,4,7,10,13,16,19,22,25,28-decasilacyclotriaconta-2,5,17,20-tetraene-8,11,14, 26,29-hexaine (10) were prepared by the reaction of bis(dimethylbromomagnesiumethynylsilyl)acetylene with (E, E)-bis(2-dimethylchlorosilylvinyl)dimethylsilane.

The reaction of (E)-1,2-bis(dimethylbromomagnesiumethynylsilyl)ethylene with (E, E)-bis(2-dimethylchlorosilylvinyl)dimethylsilane gave 1,1,4,4,7,7,10,10,13,13-decamethyl-1,4,7,10,13-pentasilacyclopentadeca-2,5,11-triene-8,14-diine (11) and 1,1,4,4,7,7,10,10,13,13,16,16,19,19,22,22,25,25,28,28-eicosamethyl-1,4,7,10,13,16,19, 22,25,28-decasilacyclotriaconta-2,5,11,17,20,26-hexaene-8,14,23,29-tetraine (12).

The reaction of bis[(dimethylbromomagnesiumethynylsilyl)ethynyl]dimethylsilane with (E)-1,2-bis(dimethylfluorosilyl)ethylene afforded 1,1,4,4,7,7,10,10,13,13decamethyl-1,4,7,10,13-pentasilacyclopentadeca-2-ene-5,8,11,14-tetraine (**13**) and 1,1,4,4,7,7,10,10,13,13,16,16,19,19,22,22,25,25,28,28-eicosamethyl-1,4,7,10,13,16,19, 22,25,28-decasilacyclotriaconta-2,17-diene-5,8,11,14,20,23,26,29-octaine (**14**).

1,1,4,4,7,7,10,10,-Octamethyl-1,4,7,10-tetrasilacyclododeca-2,8-diene-5,11-diine (15), 1,1,4,4,7,7,10,10,13,13,16,16-dodecamethyl-1,4,7,10,13,16-hexasilacyclooc-tadeca-2,8,14-triene-5,11,17-triine (16) and 1,1,4,4,7,7,10,10,13,13,16,16,19,19,22,22-hexadecamethyl-1,4,7,10,13,16,19,22-octasilacyclotetracosa-2,8,14,20-tetraene-5,11, 17,23-tetraine (17) were the products of the reaction of di(bromomagnesium)acetyl-ene with (E)-1,2-bis(dimethylfluorosilyl)ethylene.

(15)

By the reaction of bis[(dimethylbromomagnesiumethynylsilyl)ethynyl]dimethylsilane with (E, E)-bis(2-dimethylchlorosilylvinyl)dimethylsilane, 1,1,4,4,7,7,10,10, 13,13,16,16-dodecamethyl-1,4,7,10,13,16-hexasilacyclooctadeca-2,5-diene-8,11,14,17tetraine (18) was synthesized.

 $Me_2Si(C \equiv CSiMe_2C \equiv CMgBr)_2 + (E, E) - (ClMe_2SiCH = CH)_2SiMe_2 \longrightarrow$

The reaction of bis[(dimethylbromomagnesiumethynylsilyl)ethynyldimethylsilyl] acetylene with (E)-1,2-bis(dimethylfluorosilyl)ethylene led to 1,1,4,4,7,7,10,10,13, 13,16,16-dodecamethyl-1,4,7,10,13,16-hexasilacyclooctadeca-2-ene-5,8,11,14,17-pentaine (19).

We have also synthesized for the first time highly unsaturated macrobicyclic silicohydrocarbons containing an *endo*-cyclic CH_2CH_2 or (*E*)-CH=CH bridge. Thus, the reaction of bis(dimethylbromomagnesiumethynylsilyl)acetylene with 1,2-bis(methyldichlorosilyl)ethane gave 1,4,4,7,7,10,13,13,16,16-decamethyl-1,4,7,10,13, 16-hexasilabicyclo[8',8',2']eicosa-2,5,8,11,14,17-hexaine (**20**).

An analogous reaction of bis(dimethylbromomagnesiumethynylsilyl)acetylene with (E)-1,2-bis(methyldifluorosilyl)ethylene gave 1,4,4,7,7,10,13,13,16,16-decamethyl-1,4,7,10,13,16-hexasilabicyclo[8',8',2']eicosa-19-ene-2,5,8,11,14,17-hexaine (21).

Finally, by treating bis[(dimethylbromomagnesiumethynylsilyl)ethynyl]dimethylsilane with (E)-1,2-bis(methyldifluorosilyl)ethylene, 1,4,4,7,7,10,10,13,16,16,19,19, 22,22-tetradecamethyl-1,4,7,10,13,16,19,22-octasilabicyclo[11',11',2']-hexacosa-25en-2,5,8,11,14,17,20,23-octaine (22) was synthesized.

Melting points, yields, and analytical and mass spectral data of the compounds obtained are given in Table 1. Macrocyclic silicohydrocarbons are colourless, crystalline substances with high melting points, the latter rising with increasing unsaturation. Among compounds of similar unsaturation, the highest melting points are displayed by 18-membered silicohydrocarbons and the lowest ones by 15-membered. ¹H, ¹³C and ²⁹Si NMR data are presented in Table 2. The methyl group carbon atoms in C=CSiMe₂C=C are more deshielded owing to the presence of two electronegative ethynyl groups at the silicon atom. Thus, deshielding of the methyl group carbons at the silicon atom will increase as the electronegativity of the remaining substituents decreases:

$$Me_{2}Si(C \equiv C)_{2} > Me_{2}Si(C \equiv C)(CH = CH) > MeSiC \equiv C > (+0.25 \text{ to } -1.0) (-1.68 \text{ to } -2.4) CH_{2} (-2.4 \text{ to } -2.5)$$

 $M_2Si(CH = CH)_2$ (-3.5 to - 3.8 ppm)

(continued on p. 20)

								- 1
Compound	Yield,	M.p.,	Found (cale	cd.) (%)		Mass spectrum (m/z)	General	
	(%)	(° C)	C	H	Si		formula	
I	2.0	188	57.24	8.87	34.00	500(8),485(6),472(3),457(6),427(3),399(6),	C ₂₄ H ₄₄ Si ₆	1
			(57.52)	(8.85)	(33.63)	207(4),183(3),155(7),141(4),140(4),125(8),		
						99(4),97(8),85(4),83(8),73(100)		
7	4.5	190	56.85	8.21	32.65	332(16),317(33),291(3),289(6),273(6),259	C ₁₆ H ₂₈ Si	
			(57.83)	(8.43)	(33.73)	(15),207(5),175(5),165(9),155(8),125(4),		
						97(14),83(27),73(100)		
£	3.2	183	56.71	8.24	33.09	664(2),649(3),591(9),561(3),517(2),503(3),	C ₃₂ H ₅₆ Si ₈	
			(57.83)	(8.43)	(33.73)	493(2),317(3),259(2),251(3),209(2),207(2),	[
						168(5),165(5),155(11),141(4),129(4),127(10),		
						125(4),97(4),83(11),73(100)		
4	7.5	246	57.91	8.34	33.04	496(2),481(5),423(9),394(4),165(6),155(7),	$C_{24}H_{40}Si_6$	
			(57.98)	(8.11)	(33.93)	125(4),97(8),83(27),73(100)		
5	13.2	172	57.80	8.43	33.48	332(100),317(72),304(50),289(39),273(4),	$C_{16}H_{28}Si_4$	
			(57.83)	(8.43)	(33.73)	259(6),247(2),245(3),231(11),152(12),144(18),		
						97(6),85(5),83(8),73(60)		
9	3.8	160	58.19	8.54	33.00	664(7),649(4),636(1),621(2),591(6),563(4),	C ₃₂ H ₅₆ Si ₈	
			(57.83)	(8.43)	(33.73)	561(2),409(6),317(5),289(5),207(4),155(9),		
						125(6),97(7),85(9),83(5),73(100)		
-	7.0	228	58.00	8.23	3.80	330(44),315(100),257(10),232(11),97(11),	C ₁₆ H ₂₆ Si ₄	
			(58.18)	(7.88)	(33.93)	83(24),73(100)		
8	9.0	207	58.97	7.94	33.65	660(10),645(9),602(1),587(9),315(3),231(3),	C ₃₂ H ₅₂ Si ₈	
			(58.18)	(7.88)	(33.93)	165(3),155(10),97(6),83(11),73(100)		
6	17.0	172	57.97	8.30	33.50	414(20),399(47),341(19),311(9),168(14),	C ₂₀ H ₃₄ Si ₅	
			(57.89)	(8.26)	(33.85)	97(9),83(19),73(100)		
10	0.7	186	58.19	8.11	33.12	828(2),813(1),755(2),725(1),667(1),399(2),	C40H68Si10	
			(57.89)	(8.26)	(33.85)	317(2),232(2),168(5),155(9),153(3),97(3)		
						83(1),73(100)		

Polyunsaturated macrocyclic silicohydrocarbons

Table 1

C ₂₀ H ₃₆ Si 5		C40H72Si10	! !	$C_{20}H_{12}Si_4$, ; ;		C40H64Si10		C ₁₆ H ₂₈ Si ₄	 	C24H42Si	1	C ₃₂ H ₅₈ Si ₈			C24H40Si6			C ₂₄ H ₃₈ Si			C ₂₄ H ₃₄ Si ₆		C ₂₄ H ₃₂ Si			C ₃₂ H ₄₄ Si ₈	
416(12),401(35),343(31),314(14),304(9),	97(9),83(17),73(100)	832(3),817(1),759(2),155(16),83(13),73(100)		412(30),397(100),353(6),339(12),323(6),	313(8),299(3),231(5),165(4),155(4),125(4),	97(10),83(12),73(100)	824(2),809(1),751(2),232(2),165(3),145(11),	131(2),125(3),97(7),83(9),73(100)	332(17),317(42),259(20),245(8),97(13),83(25),	73(100)	498(3),483(7),425(13),396(5),165(6),155(7),	97(7),83(16),73(100)	664(18),649(5),691(12),560(3),516(4),502(5),	313(5),236(4),165(7),155(4),97(6),83(11),	73(100)	496(36),481(50),437(5),423(24),408(5),407(5),	393(8),383(4),365(4),250(7),235(4),231(4),	168(16),165(6),155(10),97(8),83(13),73(100)	494(51),435(6),421(22),407(5),406(5),405(5),	391(8),339(10),248(4),231(4),165(6),155(7),	97(12),83(25),73(100)	490(33),475(17),462(12),457(9),417(3),359(3),	97(5),83(7),73(100)	488(25), 473(30), 415(6), 401(16), 343(16),	329(4), 327(7), 313(8), 175(7), 165(5), 155(8),	97(12),83(18),73(100)	652(58),637(67),626(6),543(5),579(13),550(7),	155(7),110(4),97(7),83(17),73(100)
32.36	(33.69)	33.82	(33.69)	33.62	(34.01)		34.20	(34.01)	33.83	(33.73)	33.71	(33.73)	32.91	(33.73)		33.59	(33.93)		34.19	(34.04)		34.33	(34.32)				34.18	(34.40)
8.73	(8.70)	8.52	(8.70)	7.95	(7.81)		7.73	(1.81)	8.43	(8.43)	8.24	(8.43)	8.10	(8.43)		8.62	(8.11)		7.76	(1.74)		6.98	(6.97)				7.25	(6.79)
57.87	(57.61)	58.84	(57.61)	58.19	(58.17)		58.08	(58.17)	57.84	(57.83)	56.55	(57.83)	58.05	(57.83)		58.64	(57.98)		58.64	(58.22)		58.67	(58.69)				59.67	(58.81)
140		172		198			191		185		238		171			255			257			277		305			280	
25.0		0.5		11.0			0.4		9.1		4.4		3.3			11.0			14.0			1.0		0.5			1.0	
11		12		13			14		15		16		17			18			19			50		21			22	

'H, "C and "Si NMR spectral data for	r the compounds	obtained							
Compound	H ₁			¹³ C				²⁹ Si	
	CH ₃ Si	CH ₂ Si	=CHSi	CH ₃ Si	CH ₂ Si	=CHSi	≡CSi		
$\begin{array}{cccc} Me & Me & Me & Me \\ & & & & \\ Me-SiC \equiv CSiC \equiv CSi - Me \\ CH_2 & Me^a & CH_2^b \\ & & & \\ CH_2 & Me^a & CH_2^b \end{array}$	(0.32) _a (0.15) _b	0.62	1	(0.25) _a (-2.57) _b	8.10	1	(110.43) _a (114.01) _b	$(-42.7)_{a}$ $(-14.5)_{b}$	
$Me - SiC \equiv CSi - Me$ $Me - SiC \equiv CSi - Me$ Me Me Me Me Me									
$\begin{array}{c} Me & Me \\ He - SiC \equiv CSi - Me \\ C & H - Ch \\ C & H - Ch \\ C & H \\ C - H \\ C - H \\ C - H \\ C - H \\ Me - SiC = CSi - Me \\ Me \end{array}$	(0.26) _a (0.23) _b (0.19) _c	I	6.95,6.80 ³ (t)21.2	(-0.41) _a (-2.43) _b (-3.80) _c		(153.71) _c (153.71) _c	(114.36) _a (117.03) _b	(-42.2) _a (-27.6) _b (-17.4) _c	
(2) $Me^{-SiC} = CSiC = CSiC$	(0.36) _a (0.25) _b (0.16) _b		6.80,6.59 ³ ((1)22.0	(-0.50) _a (-1.59) _b (-3.35) _c		(147.68) _b (151.21) _c	(111.23) _a (113.45) _b	(-42.2) _a (-26.1) _b (-14.7) _c	

Table 2 ¹H, ¹³C and ²⁹Si NMR spectral data for the compounds obt

$(-41.5)_{\rm a}$ $(-25.7)_{\rm b}$	(-41.5) _a (-14.0) _b	$(-42.1)_{a}$ $(-14.3)_{b}$
(111.17) _a (112.74) _b	(113.58) _a (111.31) _c	(110.98) (110.00) _c (114.55) _b
148.44		
	9.21	8.04
(0.33) _a (-1.67) _b	(-0.54) _a (-2.43) _b	(0.17) _a (-2.56) _b
6.71		
	0.77	0.61
(0.36) a (0.24) b	(0.30) _a (0.16) _b	(0.33) _a (0.15) _b
$ \begin{array}{ccccc} Me & Me & Me & Me \\ He-SiC \equiv CSiC \equiv CSi - Me \\ C-H & Me^{a} & C^{b}-H \\ H-C & Me & H-C \\ Me-SiC \equiv CSiC \equiv CSi - Me \\ Me & Me & Me \end{array} $	$\begin{array}{cccc} Me & Me & Me \\ Me^{-1} & -1 & -1 & -1 \\ Me^{-1} & -1 & -1 & -1 \\ C & -1 & -1 & -1 \\ C & -1 & -1 & -1 \\ Me^{-1} & -1 & -1 & -1 \\ Me & Me & Me \end{array}$ (5)	$ \begin{array}{ccccc} Me & Me & Me & Me & Me \\ He - Fic \equiv CSiC^{\pm} \equiv CSiC \equiv CSi - Me \\ CH_2 & Me & Me^{a} & CH_2^{b} \\ CH_2 & Me & Me^{a} & CH_2^{c} \\ CH_2 & Me & Me & CH_2^{c} \\ Me - SiC \equiv CSiC \equiv CSiC \equiv CSi - Me \\ Me & Me & Me & Me \\ Me & Me & Me &$

Compound	Нı			1 ³ C				²⁹ Si
	CH ₃ Si	CH ₂ Si	=CHSi	CH ₃ Si	CH ₂ Si	=CHSi	≡CSi	
Me Me Me Me-SiC≡CSi-Me C H C b-H C H-C C H-C Me-SiC≡CSi-Me	(0.30) _a (0.24) _b		7.03	(-0.65) _a (-2.22) _b		150.88	(114.15) _a (113.71) _c (116.58) _b	(-41.8) _a (-26.5) _b
Me Me (7)								
$ \begin{array}{cccccc} Me & Me & Me & Me & Me \\ Me-SiC \equiv CSiC^{\circ} \equiv CSiC \equiv CSi - Me & He \\ C-H & Me & Me^{a} & C^{b}-H \\ H-C & Me & Me & H-C \\ Me-SiC \equiv CSiC \equiv CSiC \equiv CSi - Me \\ Me & Me & Me & Me \\ \end{array} $	(0.34) ^a (0.24) _b		6.72	(-0.27) _a (-1.95) _b		148.55	(111.00) _{a.c} (113.17) _b	$(-41.7)_{a}$ $(-25.7)_{b}$
(8)								
$ \begin{array}{c} Me \\ Me \\ Si \\ Si \\ Si \\ Gi \\ Me \\ Gi \\ Me \\ M$	(0.32) _a (0.23) _b (0.16) _c		6.81,6.56 ³ J(1)22.4	$(-0.14)_{a}$ $(-1.68)_{b}$ $(-3.36)_{c}$		(147.14) _b (151.20) _c	(110.41) _a (112.95) _b	(-42.0) _a (-25.4) _b (-14.5) _c
(6)								

$(-41.8)^{a}$ $(-26.2)^{b}$ $(-14.6)_{c}$	(- 26.0) _a (- 14.9) _b	
(111.06) _a (110.73) _b (113.71) _c	112.57 113.17	112.90
(147.41) _b (151.15) _c	(147.60) [±] (148.60) ^c (150.93) _b	(148.71)c (147.74) _a (150.93) _b
$(-0.27)_{a}$ $(-1.63)_{b}$ $(-3.41)_{c}$	(-1.68) _a (-3.41) _b	(-1.52) _a (-3.41) _b
6.78,6.57 ³ J(t)22.0	6.78,6.59 37(1)22.2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Me \begin{array}{c} Me \\ Me \\ Si_{a} \\ Me \\ Si_{a} \\ Me \\ Me \\ Me \\ Me \\ Me \\ H \\ H \\ Me \\ H \\ Me \\ H \\ Me \\ H \\ Me \\ H \\ H \\ H \\ Me \\ H \\ $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

l able 2 (continued)									
Compound	H			¹³ C		Na balan da mangana na kana na kana na kana na kana na mana na kana na mana na kana na mana na kana na mana na	y mang balan kanan kanan mang mang bang balan kanan mang mang bang bang bang bang bang bang bang b	²⁹ Si	
	CH ₃ Si	CH ₂ Si	=CHSi	CH ₃ Si	CH_2Si	=CHSi	≡CSi		
Me Me Si Me	(0.32) _a (0.23) _b		6.73	$(-0.16)_{a}$ $(-1.68)_{b}$		148.49	110.79 110.52 110.19	(-41.7) _a	
Me C S S S S S S S S S S S S S S S S S S							(112.68) _b	$(-25.6)_{\rm b}$	
Me-Si-C=C-Si-Me h Me H Me ^b									
(13)									
Me M	$(0.35)_{a}$ (0.26) _b		6.72	$(-0.22)_{a}$ $(-1.95)_{b}$		148.38	111.00 110.68	$(-41.3)_{a}$ $(-41.7)_{a}$	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $							(113.12) _b	۹(۵.cz –)	
n=C me me me n-C Me-SiC≡CSiC≡CSiC≡CSi⊂Me									
Me Me Me Me Me									
(14)									
Me Me	0.23		6.93	- 2.21		150.68	116.47	- 26.5	
Me−SiC≡CSi−Me									
Me Me									
(15)									

- 26.1	- 26.2	(-41.3) _a (-41.8) _a (-25.8) _b (-14.5) _c
113.06	113.22	110.66 110.81 111.33 113.54
148.60	148.71	(147.30) _b (151.13) _c
- 1.57	- 1.57	(0.26) _a (-1.56) _b (-3.45) _c
6.71	6.72	6.80 6.55 J(H-H,t) 22.5
0.25	0.25	(0.33) ₄ (0.23) ₆ (0.16) ₆
$ \begin{array}{c} Me & Me & Me \\ Me-SiC \equiv CSiC = CSiC = CSi - Me \\ C-H & Me & H_{-} \\ C-H & Me & H_{-} \\ H-C & Me & H_{-} \\ Me-SiC \equiv CSiC = CSi - Me \\ Me & Me & Me \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Compound	H _l	an a	and a second	¹³ C	ALCOLOGY ALCOLOGY ALCOLOGY ALCOLOGY ALCOLOGY	and a second		²⁹ Si	1
	CH ₃ Si	CH ₂ Si	=CHSi	CH ₃ Si	CH ₂ Si	=CHSi	≡CSi		
$Me - SiC \equiv CSiC \equiv CSi - Me$ $Me - SiC \equiv CSiC \equiv CSi - Me$ $C^{a} Me^{a} C^{b} - H$ $H = C$ $Me - SiC \equiv CSiC \equiv CSi - Me$ $Me - SiC \equiv CSiC \equiv CSi - Me$ $Me - Me$ Me Me Me	(0.25) _h (0.25) _b		6.70	$(-0.27)_{\rm s}$ $(-1.79)_{\rm b}$		148.28	110.35 110.62 111.11 112.73 113.06	$(-41.6)_{a}$ $(-41.9)_{a}$ $(-25.9)_{b}$	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(0.31) _a (0.35) _b	1.23		(-1.00) _a (-3.14) _b	10.38		(122.22) _c (112.48) _a (144.49) _b	(- 33.9) _a (- 24.30) _b	

Table 2 (continued)

Fig. 1. The structure and labelling scheme of 1.

The structure of compound 1 (Fig. 1) was proved by X-ray diffraction (bond lengths and valence angles are given in Table 3). The molecular structure of 1 in crystal form shows crystallographic symmetry C_i , although its intrinsic symmetry is higher, C_{2h} ; the double axis lies through the middle of the C(8)-C(9) and C(8')-C(9') bonds, the mirror line lying normally through the Si(1) and Si(1') atoms. The 18-membered macroheterocycle exhibits the boat conformation, the almost flat "backs" of which (Si(2) \cdots Si(1) \cdots Si(3) and Si(2') \cdots Si(1') \cdots Si(3') fragments) form dihedral angles of 109.9° with the "chair-bottom" plane, the Si(1) and Si(1') atoms being +2.61Å displaced out of the latter. In general, the 18-membered macrocycle of 1 is rigid and a change in its conformation leads to considerable distortion of either normal tetrahedral or linear coordination of the Si and C atoms, or makes the SiCH₂CH₂Si bridges adopt a disadvantageous *cis*-conformation.

The average Si-C(sp^3) distance is 1.840 Å, evidently because no correction for thermal motion of the atoms (especially that of methyl groups) was taken into consideration. The C=C bond lengths are 1.202 and 1.207(8) Å, which are normal for this class of compound. Figure 2 shows that there is a cavity 3 Å in diameter inside molecule 1 restricted by the Van der Waals surface. However, the reciprocal

Bond	d	Angle		
$\overline{\operatorname{Si}(1)-\operatorname{C}(1)}$	1.842(6)	C(1)Si(1)C(4)	106.6(3)	
Si(1) - C(4)	1.842(6)	C(5)Si(2)C(8)	109.3(3)	
Si(2) - C(5)	1.848(6)	C(9)Si(3)C(12)	109.8(3)	
Si(2) - C(8)	1.854(7)	Si(1)C(1)C(12)	177.1(6)	
Si(3) - C(9)	1.875(7)	Si(1)C(4)C(5)	176.7(5)	
Si(3) - C(12)	1.838(6)	Si(2)C(5)C(4)	177.6(6)	
C(1)–C(12)	1.207(8)	Si(2)C(8)C(9)	155.8(4)	
C(4)-C(5)	1.201(8)	Si(3)C(9)C(8)	115.2(4)	
C(8)-C(9)	1.522(9)	Si(3)C(12)C(1)	178.6(6)	

Table 3 Main bond lengths, d (Å) and valence angles (°) in molecules 1

Fig. 2. Space filling model of 1, with Van der Waals radii, showing the 3 Å cavity.

orientation of molecules in the crystal allows no through channels to be present in the crystalline structure. The molecules form layers, with the outer surface consisting of SiC=CSi fragments with C(3), C(6), and C(11) methyl substituents.

X-Ray diffraction analysis: crystals of 1, triclinic, a 5.873, b 10.735(7), 13.970(3) Å; $\alpha 105.55(4)$, $\beta 102.03(1)$, $\gamma 92.35(4)^{\circ}$; V 823.7(5) Å³, $d_{calc.} = 1.01$ g/cm³, $\mu = 2.59$ cm⁻¹, Z = 1; C₂₄H₄₄Si₆, space group $P\overline{1}$. The intensities of 2028 reflections were measured at 300 K with a Hilger-Watts automatic diffractometer (λ (Mo- K_{α}) radiation $\theta/2\theta$ scan, $2\theta_{max}$ 61°). The structure was solved by using the direct method (MULTAN program) and refined by the block-diagonal least-squares technique to an anisotropic approximation for non-hydrogen atoms and to an isotropic approximation for hydrogen atoms (located in the difference Fourier synthesis) to R = 0.056 ($R_w = 0.063$) for 1228 reflections with $I \ge 2\sigma(I)$. All calculations were carried out with an Eclipse S/200 computer using the INTEXTL program package [10].

Experimental

Mass spectra were recorded on an MAT-212 (Varian) chromatomass-spectrometer (ionizing voltage 70 eV). NMR spectra were recorded on a JEOL FX 90Q instrument (15% solution in CDCl₃, TMS).

1,1,4,4,7,7,10,10,13,13-Decamethyl-1,4,7,10,13-pentasilacyclopentadeca-2-ene-5,8,11,14-tetraine (13) and 1,1,4,4,7,7,10,10,13,13,16,16,19,19,22,22,25,25,28,28-eico samethyl-1,4,7,10,13,16,19,22,25,28-decasilacyclotriaconta-2,17-diene-5,8,11,14,20,23, 26,29-octaine (14)

Me₂Si(C=CSiMe₂C=CMgBr)₂ (obtained from 2.43 g of Mg, 10.9 g of EtBr and 13.63 g of Me₂Si(C=CSiMe₂C=CH)₂ in 100 ml of THF) and 9.17 g of (*E*)-FMe₂SiCH=CHSiMe₂F also in 100 ml of THF) were added dropwise under stirring from two dropping funnels to 100 ml of dry THF. A refluxer was replaced by a descending cooler and the major portion of THF was distilled off. After cooling, the mixture was diluted with ether and decomposed by a saturated NH₄Cl solution.

After convenient treatment and drying over CaCl₂, the solvents were distilled off; from the residue 2.31 g (11.2%) of compound 13 was isolated by distillation in vacuum (1 Torr) and then 0.082 g (0.4%) of compound 14 by distillation in high vacuum (1×10^{-5} Torr) (Table 1). The compounds obtained were recrystallized from hexane.

Compounds 1-12 and 14-22 were obtained in a similar manner (see Table 1).

Acknowledgements

The authors wish to express their sincere gratitude to Dr. Yu.E. Ovchinnikov, Dr. V.E. Shklover, Professor, Dr. Yu.T. Struchkov and Dr. I.A. Zamaev for performing the X-ray diffractions.

References

- 1 G. Fritz, P. Schober, Z. anorg. allg. Chem., 21 (1970) 372.
- 2 M.G. Voronkov, S.F. Pavlov, Zh. Obshch. Khim., 43 (1973) 1408.
- 3 E. Kloster-Jensen, G.A. Elliassen, Angew. Chem., 97 (1985) 857.
- 4 G.A. Eliassen, E. Kloster-Jensen, Ch. Romming, Acta Chem. Scand., B, 40 (1986) 574.
- 5 H. Sakurai, G. Nakadaira, A. Hosorni, G. Eriyama, Ch. Kabuto, J. Am. Chem. Soc., 105 (1983) 3359.
- 6 H. Sakurai, G. Eriyama, A. Hosomi, G. Nakadaira, Ch. Kabuto, Chem. Lett., (1984) 595.
- 7 M.G. Voronkov, O.G. Yarosh, G.Yu. Turkina, V.Yu. Vitkovskii, Zh. Obshch. Khim., 57 (1987) 2150.
- 8 M.G. Voronkov, Yu.E. Ovchinnikov, V.E. Shklover, Yu.T. Struchkov, I.A. Zamaev, O.G. Yarosh, G.Yu. Turkina, V.Yu. Vitkovskii, Dokl. Akad. Nauk S.S.S.R., 296 (1987) 130.
- 9 O.G. Yarosh, G.Yu. Turkina, V.Yu. Vitkovskii, A.I. Albanov, M.G. Voronkov, Zh. Obshch. Khim., 58 (1988) 494.
- 10 R.G. Gerr, A.I. Yanovskii, Yu.T. Struchkov, Kristallografia, 28 (1983) 1029.